3.5.43 \(\int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [443]

3.5.43.1 Optimal result
3.5.43.2 Mathematica [C] (warning: unable to verify)
3.5.43.3 Rubi [A] (verified)
3.5.43.4 Maple [C] (verified)
3.5.43.5 Fricas [C] (verification not implemented)
3.5.43.6 Sympy [F(-1)]
3.5.43.7 Maxima [F]
3.5.43.8 Giac [F]
3.5.43.9 Mupad [B] (verification not implemented)

3.5.43.1 Optimal result

Integrand size = 43, antiderivative size = 172 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {4 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 (2 A+3 B+2 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 a^2 (5 A+3 B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (4 A+3 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}} \]

output
-4*a^2*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin 
(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(2*A+3*B+2*C)*(cos(1/2*d*x+1/2*c)^2)^(1 
/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*A*(a+a* 
cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/3*(4*A+3*B)*(a^2+a^2*cos(d*x 
+c))*sin(d*x+c)/d/cos(d*x+c)^(1/2)-2/3*a^2*(5*A+3*B-C)*sin(d*x+c)*cos(d*x+ 
c)^(1/2)/d
 
3.5.43.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.59 (sec) , antiderivative size = 1025, normalized size of antiderivative = 5.96 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {(-4 A-B+2 C+B \cos (2 c)+2 C \cos (2 c)) \csc (c) \sec (c)}{4 d}+\frac {C \cos (d x) \sin (c)}{6 d}+\frac {C \cos (c) \sin (d x)}{6 d}+\frac {A \sec (c) \sec ^2(c+d x) \sin (d x)}{6 d}+\frac {\sec (c) \sec (c+d x) (A \sin (c)+6 A \sin (d x)+3 B \sin (d x))}{6 d}\right )-\frac {2 A (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}-\frac {B (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d \sqrt {1+\cot ^2(c)}}-\frac {2 C (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}+\frac {A (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d}-\frac {C (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d} \]

input
Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)) 
/Cos[c + d*x]^(5/2),x]
 
output
Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(-1/4*((-4* 
A - B + 2*C + B*Cos[2*c] + 2*C*Cos[2*c])*Csc[c]*Sec[c])/d + (C*Cos[d*x]*Si 
n[c])/(6*d) + (C*Cos[c]*Sin[d*x])/(6*d) + (A*Sec[c]*Sec[c + d*x]^2*Sin[d*x 
])/(6*d) + (Sec[c]*Sec[c + d*x]*(A*Sin[c] + 6*A*Sin[d*x] + 3*B*Sin[d*x]))/ 
(6*d)) - (2*A*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, 
{5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[ 
Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin 
[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d* 
Sqrt[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{ 
1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d* 
x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Co 
t[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c 
]]]])/(d*Sqrt[1 + Cot[c]^2]) - (2*C*(a + a*Cos[c + d*x])^2*Csc[c]*Hypergeo 
metricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/ 
2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-( 
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - A 
rcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + (A*(a + a*Cos[c + d*x])^2*Csc[ 
c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + 
 ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + 
ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*...
 
3.5.43.3 Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.349, Rules used = {3042, 3522, 27, 3042, 3454, 27, 3042, 3447, 3042, 3502, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^2 (a (4 A+3 B)-3 a (A-C) \cos (c+d x))}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^2 (a (4 A+3 B)-3 a (A-C) \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a (4 A+3 B)-3 a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2 \int \frac {3 (\cos (c+d x) a+a) \left (a^2 (3 A+3 B+C)-a^2 (5 A+3 B-C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \int \frac {(\cos (c+d x) a+a) \left (a^2 (3 A+3 B+C)-a^2 (5 A+3 B-C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a^2 (3 A+3 B+C)-a^2 (5 A+3 B-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {3 \int \frac {-\left ((5 A+3 B-C) \cos ^2(c+d x) a^3\right )+(3 A+3 B+C) a^3+\left (a^3 (3 A+3 B+C)-a^3 (5 A+3 B-C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \int \frac {-\left ((5 A+3 B-C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^3\right )+(3 A+3 B+C) a^3+\left (a^3 (3 A+3 B+C)-a^3 (5 A+3 B-C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {3 \left (\frac {2}{3} \int \frac {a^3 (2 A+3 B+2 C)-3 a^3 (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {2}{3} \int \frac {a^3 (2 A+3 B+2 C)-3 a^3 (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {3 \left (\frac {2}{3} \left (a^3 (2 A+3 B+2 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^3 (A-C) \int \sqrt {\cos (c+d x)}dx\right )-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 \left (\frac {2}{3} \left (a^3 (2 A+3 B+2 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^3 (A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {3 \left (\frac {2}{3} \left (a^3 (2 A+3 B+2 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^3 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {3 \left (\frac {2}{3} \left (\frac {2 a^3 (2 A+3 B+2 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^3 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^3 (5 A+3 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 (4 A+3 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

input
Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c 
 + d*x]^(5/2),x]
 
output
(2*A*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((2*( 
4*A + 3*B)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + 
 3*((2*((-6*a^3*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (2*a^3*(2*A + 3*B + 
 2*C)*EllipticF[(c + d*x)/2, 2])/d))/3 - (2*a^3*(5*A + 3*B - C)*Sqrt[Cos[c 
 + d*x]]*Sin[c + d*x])/(3*d)))/(3*a)
 

3.5.43.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.5.43.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 17.33 (sec) , antiderivative size = 771, normalized size of antiderivative = 4.48

method result size
parts \(\text {Expression too large to display}\) \(771\)
default \(\text {Expression too large to display}\) \(801\)

input
int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, 
method=_RETURNVERBOSE)
 
output
-2*(2*A*a^2+B*a^2)*(-2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+s 
in(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^( 
1/2)/d+2*(B*a^2+2*C*a^2)*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2 
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d+2*(A*a^ 
2+2*B*a^2+C*a^2)/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-2/3*A*a^2*(-2*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos( 
1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*c)^2*cos(1/ 
2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2) 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/ 
2*d*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1/2*d*x+1/2*c)/d-2/3*a^2*C*((2*cos(1 
/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*sin(1/2*d*x+1/2*c)^4*cos 
(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c) 
,2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2...
 
3.5.43.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.38 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (i \, \sqrt {2} {\left (2 \, A + 3 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (2 \, A + 3 \, B + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (C a^{2} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5 
/2),x, algorithm="fricas")
 
output
-2/3*(I*sqrt(2)*(2*A + 3*B + 2*C)*a^2*cos(d*x + c)^2*weierstrassPInverse(- 
4, 0, cos(d*x + c) + I*sin(d*x + c)) - I*sqrt(2)*(2*A + 3*B + 2*C)*a^2*cos 
(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3* 
I*sqrt(2)*(A - C)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPIn 
verse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(2)*(A - C)*a^2*cos 
(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 - I*sin(d*x + c))) - (C*a^2*cos(d*x + c)^2 + 3*(2*A + B)*a^2*cos(d*x + c) 
 + A*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.5.43.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)* 
*(5/2),x)
 
output
Timed out
 
3.5.43.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5 
/2),x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/c 
os(d*x + c)^(5/2), x)
 
3.5.43.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5 
/2),x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/c 
os(d*x + c)^(5/2), x)
 
3.5.43.9 Mupad [B] (verification not implemented)

Time = 3.30 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.42 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,C\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(((a + a*cos(c + d*x))^2*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x)^(5/2),x)
 
output
(2*C*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/2 + (d*x)/2, 2) 
+ 4*ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a^2*ellipticF(c/2 + (d*x)/2 
, 2))/d + (2*B*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a^2*ellipticF(c/2 
 + (d*x)/2, 2))/d + (4*A*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos( 
c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*a^2*sin( 
c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3 
/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 
 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))